Gröbner bases and their application to the Cauchy problem on finitely generated affine monoids
نویسنده
چکیده
For finitely generated submonoids of the integer lattice and submodules over the associated monoid algebra, we investigate Gröbner bases with respect to generalised term orders. Up to now, this theory suffered two disadvantages: The algorithm for computing the Gröbner bases was slow and it was not known whether there existed generalised term orders for arbitrary finitely generated submonoids. This limited the applicability of the theory. Here, we describe an algorithm which transports the problem of computing the Gröbner bases to one over a polynomial ring and use the conventional Gröbner theory to solve it, thus making it possible to apply known, optimised algorithms to it. Furthermore, we construct generalised term orders for arbitrary finitely generated submonoids. As an application we solve the Cauchy problem (initial value problem) for systems of linear partial difference equations over finitely generated submonoids.
منابع مشابه
Gröbner Bases over Finitely Generated Affine Monoids and Applications. The Direct Sum Case
For multidimensional linear systems with constant coefficients, Gröbner bases are the universal tool to solve algorithmically a multitude of problems which arise in control theory. Gröbner bases are defined over the polynomial ring which means that the domain of definition of discrete systems is the positive orthant. However, often the individual variables are interpreted diversely, e.g., some ...
متن کاملOn Regularity of Acts
In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...
متن کاملSolving System of Linear Congruence Equations over some Rings by Decompositions of Modules
In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...
متن کاملGröbner Bases and Normal Forms in a Subring of the Power Series Ring on Countably Many Variables
If K is a field, let the ring R′ consist of finite sums of homogeneous elements in R = K[[x1, x2, x3, . . .]]. Then, R′ contains M, the free semi-group on the countable set of variables {x1, x2, x3, . . .}. In this paper, we generalize the notion of admissible order from finitely generated sub-monoids of M to M itself; assume that > is such an admissible order on M. We show that we can define l...
متن کاملHow to Shell a Monoid
For a finitely generated submonoid Λ of N, we consider the minimal free resolution of a field k as a module over the monoid algebra k[Λ]. Interpreting the ranks of the free modules in the resolution as the homology of certain simplicial complexes associated to posets, we show how non-commutative Gröbner bases and the non-pure shellings of Björner and Wachs can be used to obtain information abou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 80 شماره
صفحات -
تاریخ انتشار 2017